Step of Proof: adjacent-nil
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
adjacent-nil
:
T
:Type,
x
,
y
:
T
. adjacent(
T
;[];
x
;
y
)
False
latex
by ((((Unfold `adjacent` 0)
CollapseTHEN (MaAuto
))
)
CollapseTHEN (((Reduce (-1))
Co
CollapseTHEN (((ExRepD
)
CollapseTHEN (Auto
))
))
))
latex
C
.
Definitions
adjacent(
T
;
L
;
x
;
y
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
(
x
l
)
,
n
-
m
,
||
as
||
,
,
l
[
i
]
,
n
+
m
,
#$n
,
[]
,
t
T
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
,
Type
,
{
i
..
j
}
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
B
,
P
&
Q
,
A
,
False
,
P
Q
,
Void
,
-
n
Lemmas
false
wf
,
int
seg
wf
origin